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A convenient synthesis of pyrazolines is reported via DABCO mediated reaction of ethyl diazoacetate
(EDA) with Baylis–Hillman acetates. The products were obtained in good to excellent yields (70–95%).

� 2010 Elsevier Ltd. All rights reserved.
Pyrazolines1 show a wide range of biological activity and play rearrangement of –OAc group. Unlike most of the cycloadditions

an important role in the pharmaceutical and agrochemical indus-
tries. The pyrazolines have been reported to show antidepressant,
anticancer, and antibacterial activity.2 Owing to the high impor-
tance of pyrazolines a number of synthetic approaches have been
developed.3 The diazo compounds have been extensively em-
ployed as a carbene4 source, undergo 1,3-dipolar cycloaddition5

to form five-membered heterocyclic rings, as reagents for carbonyl
homologation,6 and acid esterification.7

Over the past few years, we have investigated the Baylis–Hill-
man reaction8 and showcased the versatile utility of adducts.9

Continuing our interest, we conducted a 1,4-diazabicy-
clo[2.2.2]octane (DABCO) catalyzed reaction between ethyl diazo-
acetate (EDA) and Baylis–Hillman acetate derived from 4-
nitrobenzaldehyde (1, Scheme 1) in CH2Cl2.

To our delight the reaction proceeded smoothly in 1 h to afford
two chromatographically separable products in 1:9 ratio. The prod-
ucts can be rationalized through the DABCO catalyzed cycloaddi-
tion of EDA to the olefin of the BH-adduct with a simultaneous
ll rights reserved.

: +91 40 27160387.
shna).
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of BH acetate derived from 4-nitro
(i.e., concerted) the reaction was thought to proceed through reac-
tive intermediates to afford the products. The products were sepa-
rated into individual components and their structures identified as
regioisomeric pyrazolines 1a and 1b, respectively, from the spec-
tral data. Accordingly 1H NMR of 1a shows the benzylic CH proton
at d 5.83 ppm as a singlet integrating for one proton, NH proton as
a singlet at d 4.02 ppm (D2O exchangeable), CH2 protons as AB-
doublets at d 3.68 and at d 3.13 ppm (J = 19.49 Hz), while 1b shows
a doublet at d 6.18 ppm (J = 9.35 Hz), a doublet at d 5.34 ppm
(J = 9.35 Hz) and benzylic CH2 protons as AB-doublets at d 3.41
and at d 3.13 ppm (J = 19.49 Hz).

Next, reaction optimization studies were performed between 1
and EDA using different solvents and bases (Table 1). After screen-
ing, DABCO was selected as the base and CH2Cl2 as the solvent for
all further reactions (entry 1, Table 1). The optimum catalyst load-
ing was found to be 20 mol % of DABCO. The ratio of major and
minor products remained the same in all the cases. There was no
temperature effect on the product distribution or on the rate of
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benzaldehyde and EDA under optimal conditions.
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Scheme 2. Reaction of BH acetates derived from acetaldehyde and EDA under
optimal conditions.

Table 3
Reaction of aliphatic BH acetates with EDA under optimal conditions
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Table 1
Optimization of reaction conditions

Entry Base Solvent Time (h) Yield (%)a

1 DABCO CH2Cl2 1 95
2 1,8-Diazabicyclo[5,4,0] undec-7-

ene
CH2Cl2 3 56

3 Imidazole CH2Cl2 2.5 67
4 N,N-Diisopropylethyl amine CH2Cl2 2 70
5 DABCO THF 3 75
6 DABCO MeOH 3 50
7 DABCO CH3CN 2 56
8 DABCO Neat 1 48b

a The ratio of major and minor products is almost 1:9 ratio in all cases.
b Product was isolated along with mixture of undesired products.
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the reaction. A blank reaction without a catalyst did not give the
desired products.

To extend the scope of this methodology, various Baylis–Hillman
acetates (2–4) derived from benzaldehyde, 4-cyanobenzaldehyde,
and 4-fluorobenzaldehyde under the standardized conditions affor-
ded the corresponding products (1a–4a) in minor quantities (8–10%)
and their isomeric counterparts (1b–4b) in excellent yields (Table 2).

But interestingly, when aliphatic Baylis–Hillman acetates were
the substrates different products were obtained (Scheme 2). The
first example chosen was the Baylis–Hillman acetate (5) derived
from acetaldehyde under standard reaction conditions.

The product 5a was obtained in good yield (75%) within 20 min
as the only product and it was characterized by its spectral data.
For instance, 1H NMR shows olefinic protons as a double doublet
at d 6.01 ppm (J = 10.57, 17.37 Hz), a multiplet at d 5.40–
5.23 ppm, CH2 protons appeared as AB-doublets at d 3.53 and at
d 2.94 ppm (J = 17.37 Hz). The reason for this unusual result was
explained at a later stage. The relative stereochemistry of the sub-
stituents (of the major and minor products) and hence the diaste-
reomeric ratio could not be ascertained from the NMR data.

Next, the versatility of this reaction was studied with various
aliphatic Baylis–Hillman acetates derived from butyraldehyde,
hexanaldehyde, and propionaldehyde as shown in Table 3.

The plausible mechanism is as shown in Scheme 3 (part i). At
first the EDA activated by DABCO (triazene intermediate)10 attacks
BH acetate via the Michael addition pathway resulting in interme-
diate A which can isomerise to B.11 Then the reattack of acetate ion
on A and B promotes the cyclization to afford pyrazolines 1a and
Table 2
Reaction of various aromatic BH acetates with EDA under optimal conditions

Entry BH acetate Time (h) Produ
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1b in 1:9 ratio, respectively. The major products arising from inter-
mediate B are sterically more favored. The formation of 5a (and the
related products as in Table 3) can be explained invoking a similar
mechanism (Scheme 3, part ii). However, the basic difference is
that due to the presence of a c-proton and its participation in
the trapping of the ‘acetoxy ion’ results in the cyclization followed
by 1,3-H shift to afford a 5-vinyl pyrazoline unlike the earlier sub-
strates. Expectedly, we did not obtain a 5-alkenyl pyrazoline prod-
uct when the acetate of formaldehyde BH-adduct was exposed to
the same reaction conditions thus proving the participation of
the c-proton.
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Scheme 3. Plausible mechanism.
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In conclusion, we have demonstrated a new and efficient meth-
odology for the synthesis of pyrazolines.12,13 The reaction is simple,
convenient with lower reaction times, and the starting compounds
are easy to prepare, which makes it a useful and attractive process
for the preparation of pyrazolines. Overall, a facile synthesis of
densely functionalized pyrazolines has been reported.
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